Problem: 0(1(2(2(x1)))) -> 0(1(0(2(2(x1))))) 0(1(2(2(x1)))) -> 0(1(2(3(2(x1))))) 0(1(2(2(x1)))) -> 0(2(2(1(3(x1))))) 0(1(2(2(x1)))) -> 1(0(3(2(2(x1))))) 0(1(2(2(x1)))) -> 1(2(0(3(2(x1))))) 0(1(2(2(x1)))) -> 1(3(0(2(2(x1))))) 0(1(2(2(x1)))) -> 1(3(2(0(2(x1))))) 0(1(2(2(x1)))) -> 0(1(0(4(2(2(x1)))))) 0(1(2(2(x1)))) -> 0(2(1(3(2(3(x1)))))) 0(1(2(2(x1)))) -> 1(2(1(0(4(2(x1)))))) 0(1(2(2(x1)))) -> 1(5(0(4(2(2(x1)))))) 0(1(2(2(x1)))) -> 2(0(3(1(3(2(x1)))))) 0(1(2(2(x1)))) -> 2(1(1(0(4(2(x1)))))) 0(1(2(2(x1)))) -> 2(1(3(0(2(0(x1)))))) 0(1(2(2(x1)))) -> 2(1(3(3(2(0(x1)))))) 0(1(2(2(x1)))) -> 2(1(5(3(0(2(x1)))))) 0(1(2(2(x1)))) -> 2(2(1(3(0(5(x1)))))) 0(1(2(2(x1)))) -> 2(4(1(3(2(0(x1)))))) 0(1(4(5(x1)))) -> 1(5(0(4(1(x1))))) 0(1(4(5(x1)))) -> 5(0(4(1(5(x1))))) 0(1(4(5(x1)))) -> 5(4(1(5(0(x1))))) 0(1(4(5(x1)))) -> 1(1(5(0(4(1(x1)))))) 0(1(4(5(x1)))) -> 5(4(1(5(5(0(x1)))))) 5(1(2(2(x1)))) -> 1(0(2(2(5(x1))))) 5(1(2(2(x1)))) -> 1(3(5(2(2(x1))))) 5(1(2(2(x1)))) -> 1(5(2(3(2(x1))))) 5(1(2(2(x1)))) -> 1(5(0(2(2(3(x1)))))) 5(1(2(2(x1)))) -> 2(1(0(3(2(5(x1)))))) 5(1(2(2(x1)))) -> 3(1(3(5(2(2(x1)))))) 5(1(2(2(x1)))) -> 4(1(3(2(2(5(x1)))))) 5(1(2(2(x1)))) -> 5(1(0(4(2(2(x1)))))) 5(1(2(2(x1)))) -> 5(1(2(0(4(2(x1)))))) 0(1(1(4(5(x1))))) -> 3(1(0(4(1(5(x1)))))) 0(1(2(2(2(x1))))) -> 1(0(2(2(5(2(x1)))))) 0(1(2(2(5(x1))))) -> 1(5(0(4(2(2(x1)))))) 0(1(2(4(5(x1))))) -> 2(5(1(0(4(5(x1)))))) 0(1(4(5(2(x1))))) -> 1(0(4(2(0(5(x1)))))) 0(1(4(5(5(x1))))) -> 5(0(4(0(1(5(x1)))))) 0(1(5(4(5(x1))))) -> 1(5(0(4(1(5(x1)))))) 0(5(1(2(2(x1))))) -> 0(1(3(2(5(2(x1)))))) 3(3(1(2(2(x1))))) -> 1(3(2(0(3(2(x1)))))) 3(4(4(0(5(x1))))) -> 3(5(4(5(0(4(x1)))))) 5(0(1(2(2(x1))))) -> 1(3(2(0(5(2(x1)))))) 5(1(2(2(5(x1))))) -> 1(5(2(3(2(5(x1)))))) 5(2(1(2(2(x1))))) -> 2(1(3(5(2(2(x1)))))) 5(2(4(0(5(x1))))) -> 0(4(2(5(5(5(x1)))))) 5(2(4(0(5(x1))))) -> 0(4(5(4(2(5(x1)))))) Proof: Bounds Processor: bound: 1 enrichment: match automaton: final states: {6,5,4} transitions: 21(60) -> 61* 21(35) -> 36* 21(117) -> 118* 21(77) -> 78* 21(7) -> 8* 21(221) -> 222* 21(211) -> 212* 21(166) -> 167* 21(36) -> 37* 21(31) -> 32* 21(223) -> 224* 21(21) -> 22* 21(188) -> 189* 21(183) -> 184* 21(143) -> 144* 21(23) -> 24* 21(220) -> 221* 21(8) -> 9* 21(165) -> 166* 21(105) -> 106* 11(10) -> 11* 11(187) -> 188* 11(162) -> 163* 11(142) -> 143* 11(107) -> 108* 11(102) -> 103* 11(57) -> 58* 11(79) -> 80* 11(34) -> 35* 11(91) -> 92* 11(168) -> 169* 11(200) -> 201* 31(55) -> 56* 31(45) -> 46* 31(30) -> 31* 31(227) -> 228* 31(197) -> 198* 31(67) -> 68* 31(47) -> 48* 31(199) -> 200* 31(179) -> 180* 31(129) -> 130* 31(119) -> 120* 31(141) -> 142* 31(136) -> 137* 31(103) -> 104* 31(78) -> 79* 31(33) -> 34* 31(185) -> 186* 51(137) -> 138* 51(219) -> 220* 51(209) -> 210* 51(139) -> 140* 51(178) -> 179* 51(153) -> 154* 51(93) -> 94* 51(155) -> 156* 01(167) -> 168* 01(127) -> 128* 01(104) -> 105* 01(69) -> 70* 01(59) -> 60* 01(9) -> 10* 01(186) -> 187* 01(121) -> 122* 01(116) -> 117* 01(56) -> 57* 01(11) -> 12* 01(118) -> 119* 01(140) -> 141* 01(90) -> 91* 41(75) -> 76* 41(89) -> 90* 41(201) -> 202* 41(163) -> 164* 00(2) -> 4* 00(1) -> 4* 00(3) -> 4* 10(2) -> 1* 10(1) -> 1* 10(3) -> 1* 20(2) -> 2* 20(1) -> 2* 20(3) -> 2* 30(2) -> 6* 30(1) -> 6* 30(3) -> 6* 40(2) -> 3* 40(1) -> 3* 40(3) -> 3* 50(2) -> 5* 50(1) -> 5* 50(3) -> 5* 1 -> 153,121,45,21 2 -> 139,116,33,7 3 -> 155,127,47,23 8 -> 219,89,69,30 9 -> 178,75,55 10 -> 93,67 11 -> 209* 12 -> 122,4 22 -> 8* 24 -> 8* 31 -> 102,59 32 -> 10* 34 -> 77* 37 -> 11* 46 -> 34* 48 -> 34* 58 -> 154,165,122,5,4 61 -> 57* 68 -> 57* 70 -> 136,31 76 -> 9* 78 -> 183* 80 -> 36* 91 -> 211* 92 -> 107,60 94 -> 57* 106 -> 122,4 108 -> 105* 118 -> 129* 120 -> 107* 122 -> 117* 128 -> 117* 130 -> 162,119 138 -> 107* 140 -> 165* 144 -> 105* 154 -> 140* 156 -> 140* 164 -> 105* 166 -> 220,140,185 167 -> 199* 169 -> 154,165,223,197,5 180 -> 168* 184 -> 9* 189 -> 154,165,5 198 -> 154,165,5 202 -> 154,165,5 210 -> 154,165,5 212 -> 10* 221 -> 227* 222 -> 56* 224 -> 5* 228 -> 57* problem: Qed